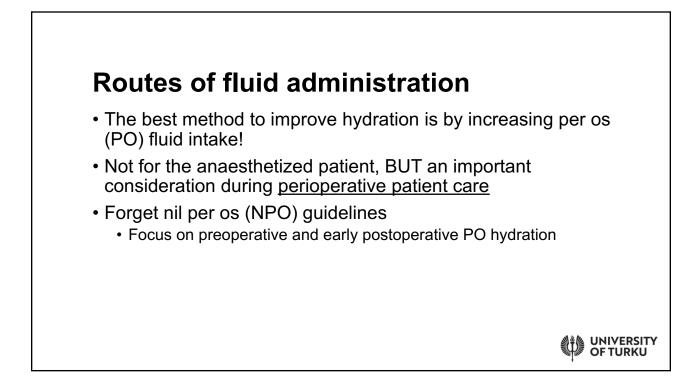
Which fluid to non-critical surgical patient?

Teijo Saari Associate Professor and Head Department of Anesthesiology and Intensive Care University of Turku teisaa@utu.fi

History of fluid therapy

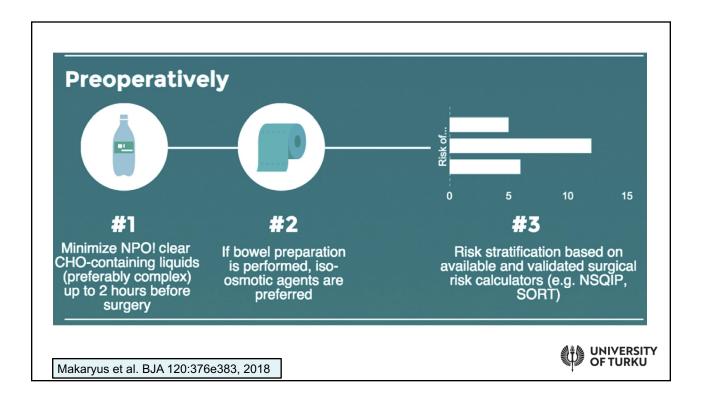
- Early on, very little fluids intraoperatively, as fluids were thought to increase the risk of postoperative complications
- Fluid administration during surgery became a standard of care
 - Liberal fluid therapy based on the concept that inadequate administration of fluids would result in poor outcomes
- Fluid overload in postoperative patients also caused rather severe complications
- With this in mind, it is imperative that we define the treatment goals for management of perioperative fluid therapy

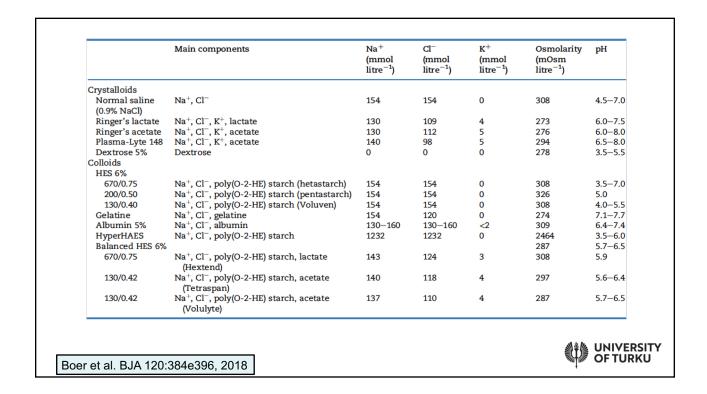


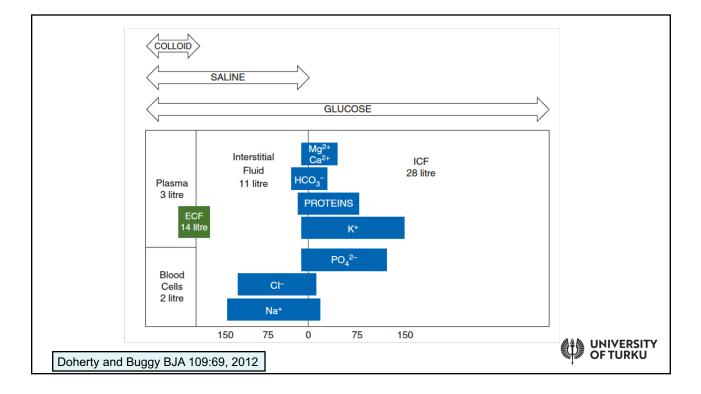
UNIVERSITY OF TURKU

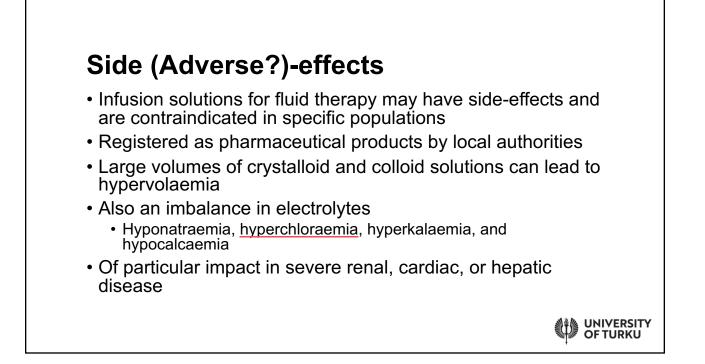
UNIVERSITY OF TURKU

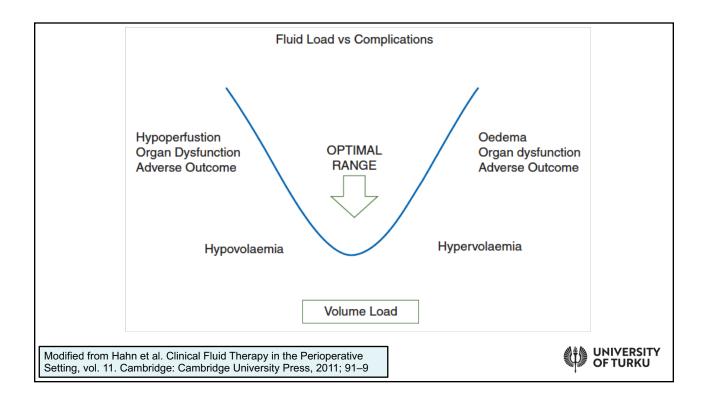
Fluid management in enhanced recovery

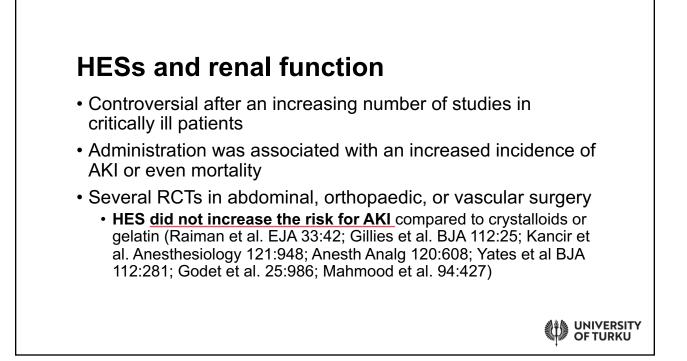

- · Consider fluids as medications
 - Dose accurately calculated
- Intraoperative management of fluids during surgery should be guided by *goal-directed therapy (GDT)* rather than predetermined calculations
- Titrate to the desired effect

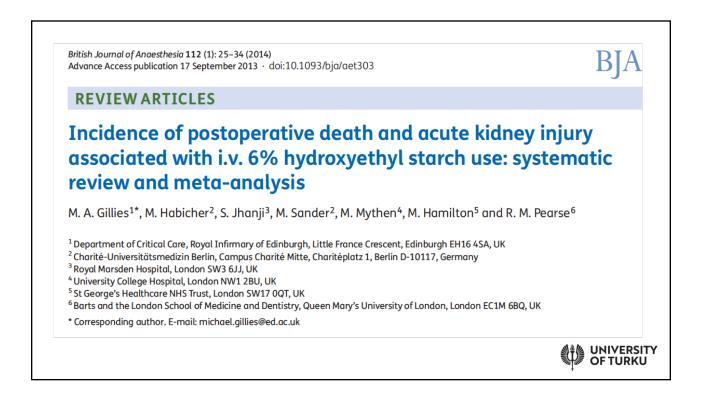



Which PO fluid?

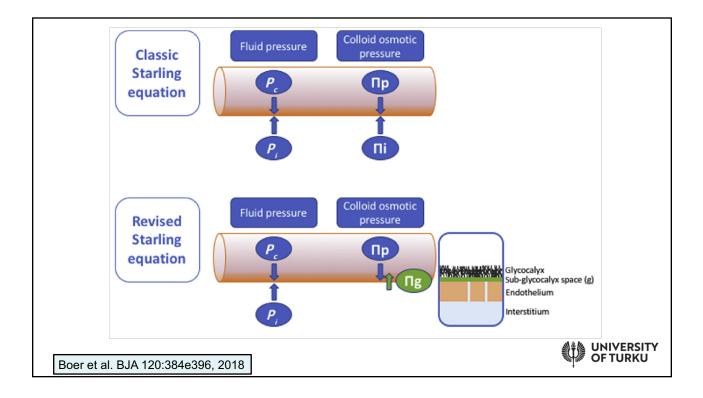

- Patients should be encouraged to continue PO hydration up until 2 h before surgery
- Clear liquids ending 2 h prior to surgery does not increase gastric volumes, and may even reduce the acidity of stomach fluids
- The recommended preoperative use of <u>clear carbohydrate</u> <u>beverages prior to surgery has not been associated</u> with any increase in the risk of aspiration or other pulmonary complications


UNIVERSITY OF TURKU





The NEW ENGLAND JOURNAL of MEDICINE
ORIGINAL ARTICLE
Balanced Crystalloids versus Saline in Noncritically Ill Adults
Wesley H. Self, M.D., M.P.H., Matthew W. Semler, M.D., Jonathan P. Wanderer, M.D., Li Wang, M.S., Daniel W. Byrne, M.S., ean P. Collins, M.D., Corey M. Slovis, M.D., Christopher J. Lindsell, Ph Jesse M. Ehrenfeld, M.D., M.P.H., Edward D. Siew, M.D., Andrew D. Shaw, M.B., Gordon R. Bernard, M.D., and Todd W. Rice, M.D., for the SALT-ED Investigators*

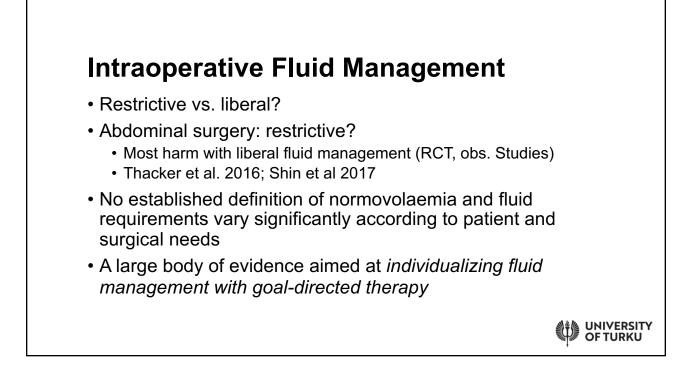

	HES		Contro			Risk difference	Risk difference
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95% Cl	M–H, fixed, 95% Cl
Cardiac surgery							
Alavi and colleagues ²⁰	0	32	0	60	6.1%	0.00 [-0.05, 0.05]	†
Diehl and colleagues ²²	0	33	0	27	4.4%	0.00 [-0.06, 0.06]	+
Hecht-Dolnik and collea		78	0	78	11.5%	0.00 [-0.02, 0.02]	• • • •
Kuitunen and colleague		30	0	15	2.9%	0.00 [-0.10, 0.10]	
Munsch and colleagues	32 0	20	0	20	2.9%	0.00 [-0.09, 0.09]	-
Ooi and colleagues ³³	0	45	0	45	6.6%	0.00 [-0.04, 0.04]	+
Sirvinskas and colleagu	es ³⁴ 0	40	0	40	5.9%	0.00 [-0.05, 0.05]	+
Van der Linden and colle	agues ³⁵ 0	55	0	55	8.1%	0.00 [-0.03, 0.03]	+
Van der Linden and colle	agues ³⁶ 0	64	1	68	9.7%	-0.01 [-0.06, 0.03]	*
Verheij and colleagues ³	7 0	17	2	50	3.7%	-0.04 [-0.14, 0.06]	
Subtotal (95% CI)		414		458	62.0%	-0.00 [-0.02, 0.01]	
Total events	0		3				
Heterogeneity: $\chi^2 = 1.12$,	df=9 (P=	1.00); <i>1</i> 2	=0%				
Test for overall effect: Z=	=0.58 (<i>P</i> =0	0.56)					
Non-cardiac/mixed su	rgery						
Dehne and colleagues ²¹	0	45	0	15	3.3%	0.00 [-0.09, 0.09]	+
Feldheiser and colleagu		26	0	24	3.7%	0.04 [-0.06, 0.14]	+
Godet and colleagues24	2	32	2	33	4.8%	0.00 [-0.11, 0.12]	+
Gondos and colleagues	25 15	50	38	150	11.1%	0.05 [-0.10, 0.19]	
Guo and colleagues ²⁶	0	20	0	22	3.1%	0.00 [-0.09, 0.09]	+
Hung and colleagues ²⁷	0	41	0	39	5.9%	0.00 [-0.05, 0.05]	+
Mahmood and colleague	es ³⁰ 1	42	3	20	4.0%	-0.13 [-0.29, 0.04]	
Marik and colleagues ³¹	0	15	0	15	2.2%	0.00 [-0.12, 0.12]	
Subtotal (95% CI)		271		318	38.0%	0.00 [-0.12, 0.12]	•
Total events	19		43				
Heterogeneity: $\chi^2 = 3.27$,	df=7 (P=	0.86); / ²	=0%				
Test for overall effect: Z=							
		,					
Total (95% CI)		685		776	100.0%	-0.00 [-0.02, 0.02]	•
Total events	19		46				
Heterogeneity: $\chi^2 = 4.33$,			² =0%				
Test for overall effect: Z=							Favours HES Favours control
Test for subgroup differe	nces: $\chi^2 =$	0.11, df	=1 (<i>P</i> =0.7	4); I ² =	0%		

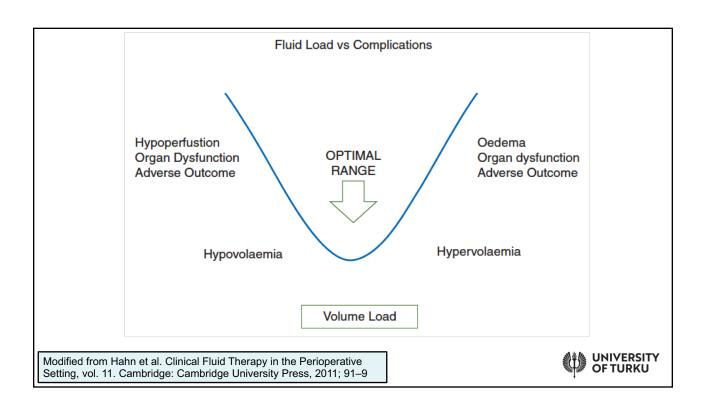
	HES		Contr			Risk difference	Risk difference
Study or subgroup	Events	Total	Events	Total	Weight	M–H, fixed, 95% CI	M–H, fixed, 95% Cl
Cardiac surgery							
Lee and colleagues ²	9 1	53	0	53	26.5%	0.02 [-0.03, 0.07]	+
Ooi and colleagues ³	3 0	45	0	45	22.5%	0.00 [-0.04, 0.04]	+
Subtotal (95% CI)		98		98	49.0%	0.01 [-0.02, 0.04]	•
Total events	1		0				
Heterogeneity: $\chi^2 = 0$.	33, df=1 (P	=0.56);	l ² =0%				
Test for overall effect	: Z=0.58 (P	=0.56)					
Non-cardiac/mixed	surgery						
Diehl and colleagues	22 2	33	0	27	14.8%	0.06 [-0.04, 0.16]	
Godet and colleague	s ²⁴ 8	32	7	33	16.2%	0.04 [-0.17, 0.24]	_
Hung and colleague	s ²⁷ 0	41	0	39	20.0%	0.00 [-0.05, 0.05]	+
Subtotal (95% CI)		106		99	51.0%	0.03 [-0.04, 0.10]	•
Total events	10		7				
Heterogeneity: $\chi^2 = 1$.	87, df=2 (P	=0.39);	l ² =0%				
Test for overall effect	: <i>Z</i> =0.78 (<i>P</i>	=0.43)					
Total (95% CI)		204		197	100.0%	0.02 [-0.02, 0.06]	•
Total events	11		7				
Heterogeneity: $\chi^2 = 2$	21, df=4 (P	=0.70)	; I ² =0%			F	1 -0.5 0 0.5 1
Test for overall effect	: Z=0.95 (P	=0.34)				-	1 –0.5 0 0.5 1 Favours HES Favours control
Test for subgroup dif	ferences: χ^2	² =0.22.	df=1 (<i>P</i> =	=0.64):	l ² =0%		Favours HES Favours control
5 1	~			,,			

Effect of fluids on haemostasis

- No difference in 24h blood loss
 - Albumin vs. HES130/0.4, pediatric patients (Hanart el al. CCM 37:696)
 - HES130/0.4 vs Gelatine, CABG (Kasper et al. Anesthesiology 99:42)
 - Balanced crystalloid vs HES130/0.4, CABG (Kimenai et al. Perfusion 28:512)
 - Balanced crystalloid vs HES130/0.4, CABG (Lee et al. Circ J 75:2397)
 - Albumin 5% vs. Ringer, cystectomy (Rasmussen et al. Medicine 95:e2720)
 - Ringer vs. Dextran70, cystectomy (Rasmussen et al. BMC Anesth 15:178)
 - Albumin vs. HES130/0.4 vs. Ringer, cardiac (Skhirtladze et al. BJA 112:255)

UNIVERSITY OF TURKU




Glycocalyx

- FFP, but not Ringer's lactate, normal saline, or HES, partially restores glycocalyx thickness
- Concomitant benefits for microcirculatory perfusion, after haemorrhagic shock
 - Larger plasma volume expansion?
- Current literature lacks evidence with respect to the clinical impact of fluids on glycocalyx integrity
- Is glycocalyx integrity involved in the regulation of intravascular volume during fluid resuscitation

UNIVERSITY

OPTIMISE-study

- Pragmatic, multicenter, randomized, observer-blinded trial of 734 high-risk patients aged > 50 years
- Major gastrointestinal surgery at 17 acute care hospitals in the United Kingdom
- Patients were randomly assigned to a cardiac outputguided hemodynamic therapy algorithm for IV fluid and inotrope (dopexamine) infusion during and 6 hours following surgery (n=368) or to usual care (n=366)
- An updated systematic review and meta-analysis were also conducted including randomized trials published from 1966 to February 2014

OPTIMISE-study

- The primary outcome was a composite of predefined 30-day moderate or major complications and mortality
- Secondary outcomes were morbidity on day 7; infection, critical care—free days, and all-cause mortality at 30 days; allcause mortality at 180 days; and length of hospital stay

UNIVERSITY OF TURKU

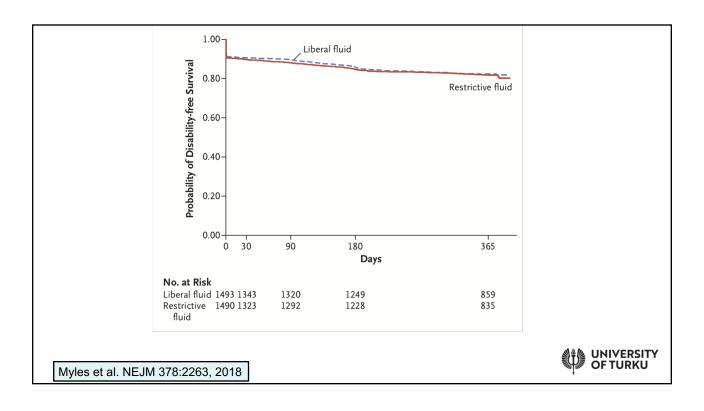
UNIVERSITY OF TURKU

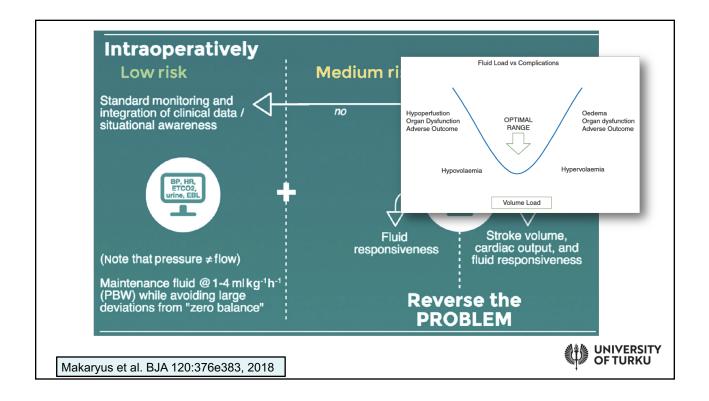
UNIVERSITY OF TURKU

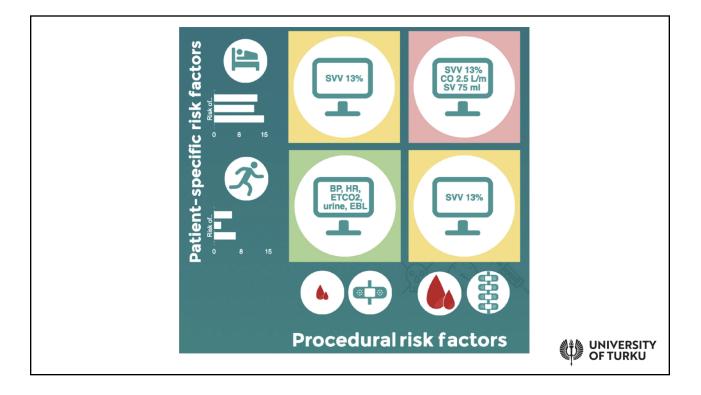
Results

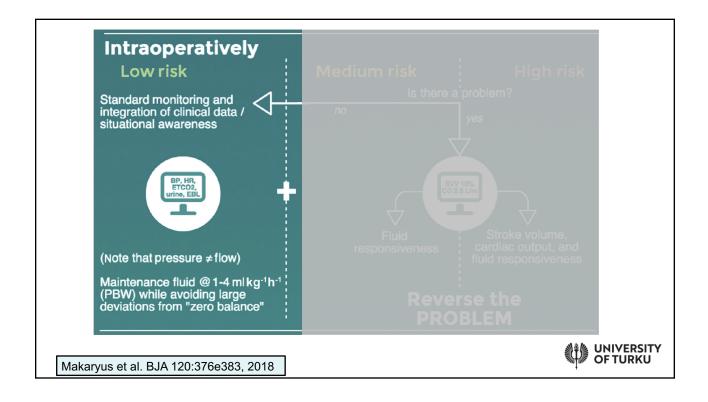
- The primary outcome
 - 36.6% of intervention and 43.4% of usual care participants
 - Relative risk [RR], 0.84 [95%CI, 0.71-1.01]
 - Absolute risk reduction, 6.8% [95%CI, -0.3%to 13.9%]
- No significant difference between groups for any secondary outcomes
- Meta-analysis of 38 trials suggest that the intervention is associated with fewer complications
 - Intervention, 488/1548 [31.5%] vs control, 614/1476 [41.6%]
 - RR, 0.77 [95%CI, 0.71-0.83]

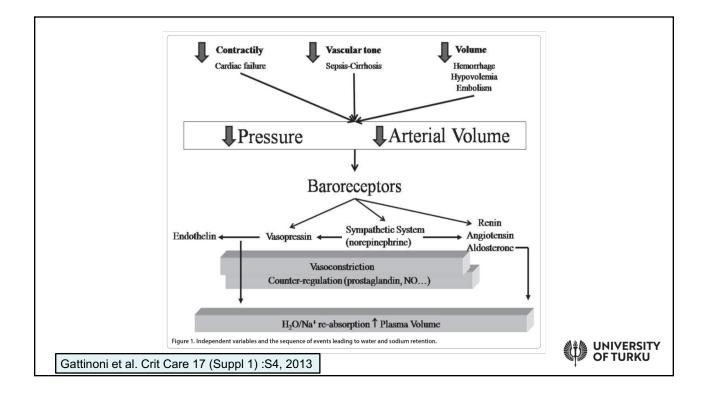
	Interve	ention	Con	trol					
Source	No. of Events	Total No.	No. of Events	Total No.	Risk Ratio (95% CI)	Int	Favors ervention	Favors Control	Weight, %
Shoemaker et al, ²⁰ 1988	8	28	30	60	0.57 (0.30-1.08)			-	1.7
Berlauk et al, ²¹ 1991	11	68	9	21	0.38 (0.18-0.79)				1.3
Mythen et al, ²² 1995	0	30	6	30	0.08 (0.00-1.31)	-		_	0.1
Sinclair et al, ²³ 1997	1	20	1	20	1.00 (0.07-14.90)				- 0.1
Ueno et al, ²⁴ 1998	4	16	5	18	0.90 (0.29-2.78)				0.5
Wilson et al, ²⁵ 1999	38	92	28	46	0.68 (0.48-0.95)				6.2
Lobo et al, ²⁶ 2000	6	19	12	18	0.47 (0.23-0.99)				1.3
Jerez et al, ²⁷ 2001	53	181	65	209	0.94 (0.70-1.28)			_	7.6
Conway et al, ²⁸ 2002	5	29	9	28	0.54 (0.20-1.40)			_	0.8
Pearse et al, ¹⁴ 2005	27	62	41	60	0.64 (0.46-0.89)				6.3
Wakeling et al, ²⁹ 2005	24	67	38	67	0.63 (0.43-0.93)				4.8
Noblett et al, ³⁰ 2006	1	51	8	52	0.13 (0.02-0.98)	-			0.2
Donati et al, ³¹ 2007	8	68	20	67	0.39 (0.19-0.83)				1.3
Smetkin et al, ³² 2009 ^a	1	20	4	20	0.25 (0.03-2.05)				0.2
Jhanji et al, ⁶ 2010	57	90	30	45	0.95 (0.73-1.23)		-	-	10.4
Mayer et al, ³³ 2010	6	30	15	30	0.40 (0.18-0.89)				1.1
Cecconi et al, ³⁴ 2011	16	20	20	20	0.80 (0.64-1.02)		-=		12.8
Challand et al, ³⁵ 2012	10	89	13	90	0.78 (0.36-1.68)				1.2
Brandstrup et al, ³⁶ 2012 ^a	23	71	24	79	1.07 (0.66-1.71)		_	-	3.1
Salzwedel et al, ³⁷ 2013 ^a	21	79	36	81	0.60 (0.39-0.93)				3.6
Goepfert et al, ³⁸ 2013 ^a	34	50	42	50	0.81 (0.65-1.01)		-		13.7
OPTIMISE, 2014	134	368	158	365	0.84 (0.70-1.01)		-		21.8
Total	488	1548	614	1476	0.77 (0.71-0.83)		\$		100.0
Heterogeneity: χ^2_{21} = 30.44; Test for overall effect: z = 6.	P=.08; I ² = 22: P<.001	31%				0.05	0.2 1	.0 5.0	20
					L. L.	1.05		0 5.0 (95% CI)	20


So?


- Large multicentre trials needed, evaluating the effectiveness of different fluid regimens
- OPTIMISE II (n=2500)
- RELIEF (n=3000)
 - Primary endpoint of disability free survival at 1 yr after surgery


UNIVERSITY OF TURKU




Variable	Restrictive Fluid (N = 1490)	Liberal Fluid (N=1493)	P Valu
During surgery			
Median intraoperative blood loss (IQR) — ml	200 (100 to 400)	200 (100 to 500)	0.14†
Median intraoperative fluid administration (IQR) — ml			
Crystalloid	1677 (1173 to 2294)	3000 (2100 to 3850)	<0.001
Colloid‡	500 (250 to 800)	500 (400 to 1000)	0.01
Median infusion rate (IQR) — ml/kg/hr	6.5 (5.1 to 8.4)	10.9 (8.7 to 13.5)	<0.001
In PACU§			
Median administration of fluid (IQR) — ml			
Crystalloid	160 (90 to 302)	300 (160 to 500)	< 0.001
Colloid:	400 (250 to 500)	500 (250 to 500)	0.27
Postoperative day 1, post-PACU			
Median administration of fluid (IQR) — ml			
Crystalloid	1556 (1200 to 1960)	2600 (2052 to 3150)	< 0.001
Colloid‡	500 (250 to 1000)	500 (400 to 750)	0.89
Median infusion rate (IQR) — ml/kg/hr	0.9 (0.7 to 1.2)	1.5 (1.2 to 1.7)	< 0.001
At 24 hr after surgery			
Median cumulative total for intravenous fluids (IQR) — ml	3671 (2885 to 4880)	6146 (5000 to 7410)	<0.001
Median fluid balance (IQR) — ml¶	1380 (540 to 2338)	3092 (2010 to 4241)	<0.001†
Median weight gain (IQR) — kg	0.3 (-1.0 to 1.9)	1.6 (0.0 to 3.6)	ND

